N=1+11+111+..... to 2011 terms =91[(10−1)+(102−1)+.....to2011terms] =91[10+102+....+102011−2011] =91[910(102011−1)−2011] =811[102011−18109] =811[999......981891] begins with (2012−m) nines
where m= number of digits of 18109 i.e. m=5 ∴N=91[111....109099] begins with(2012−5=2007) ones N=12345679 (each digit 223 times) 01011 (∵92007=223) =223×(1+2+3+4+5+6+7+8+9)+1+0+1+1 =223×37+3=8251+3=8254 ∴S=8+2+5+4+19 which is a prime number