Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If real numbers x and y satisfy (x+5)2+(y-12)2=(14)2, then the minimum value of √x2+y2 is
Q. If real numbers
x
and
y
satisfy
(
x
+
5
)
2
+
(
y
−
12
)
2
=
(
14
)
2
, then the minimum value of
x
2
+
y
2
is _____
829
159
Conic Sections
Report Error
Answer:
1
Solution:
Let
x
+
5
=
14
cos
θ
and
y
−
12
=
14
sin
θ
∴
x
2
+
y
2
=
(
14
cos
θ
−
5
)
2
+
(
14
sin
θ
+
12
)
2
=
196
+
25
+
144
+
28
(
12
sin
θ
−
5
cos
θ
)
=
365
+
28
(
12
sin
θ
−
5
cos
θ
)
∴
x
2
+
y
2
∣
∣
m
i
n
=
365
−
28
×
13
=
365
−
364
=
1