Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If r is a unit vector satisfying r × a = b ,| a |=2 and | b |=√3, then one such r =
Q. If
r
is a unit vector satisfying
r
×
a
=
b
,
∣
a
∣
=
2
and
∣
b
∣
=
3
​
, then one such
r
=
1244
199
TS EAMCET 2019
Report Error
A
4
1
​
[
2
a
+
(
b
×
a
)]
B
4
1
​
[
a
−
(
2
b
×
a
)]
C
3
1
​
[
a
−
(
b
×
a
)]
D
4
1
​
[
a
−
(
b
×
a
)]
Solution:
We have,
r
×
a
=
b
∣
r
×
a
∣
=
∣
b
∣
∣
r
∣∣
a
∣
sin
θ
=
∣
b
∣
sin
θ
=
∣
a
∣
∣
b
∣
​
=
2
3
​
​
[
â‹…
∣
r
∣
=
1
,
∣
a
∣
=
2
,
∣
b
∣
=
3
​
]
∴
θ
=
6
0
∘
(
r
×
a
)
×
a
=
b
×
a
(
r
.
a
)
a
−
∣
a
∣
2
r
=
b
×
a
r
=
∣
a
∣
2
1
​
[(
a
â‹…
r
)
a
−
b
×
a
]
r
=
4
1
​
((
∣
a
∥
r
∣
cos
θ
)
a
−
b
×
a
)
⇒
r
=
4
1
​
(
a
−
(
b
×
a
))