Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If r = hat i + hat j +t(2 hat i - hat j + hat k ) and r =2 hat i + hat j - hat k +s (3 hat i -5 hat j +2 hat k ) are the vector equations of two lines L1 and L2, then the shortest distance between them is
Q. If
r
=
i
^
+
j
^
+
t
(
2
i
^
−
j
^
+
k
^
)
and
r
=
2
i
^
+
j
^
−
k
^
+
s
(
3
i
^
−
5
j
^
+
2
k
^
)
are the vector equations of two lines
L
1
and
L
2
, then the shortest distance between them is
1220
206
TS EAMCET 2019
Report Error
A
59
9
B
59
10
C
59
11
D
0
Solution:
We have,
r
=
i
^
+
j
^
+
t
(
2
^
−
j
^
+
k
^
)
r
=
2
i
^
+
j
^
−
k
^
+
s
(
3
i
^
−
5
j
^
+
2
k
^
)
Here,
a
1
=
i
^
+
j
^
b
1
=
2
i
^
−
j
^
+
k
^
a
2
−
2
i
^
+
j
^
−
k
^
b
2
=
3
i
^
−
5
j
^
+
2
k
^
a
2
−
a
1
=
i
^
−
k
^
b
1
×
b
2
=
∣
∣
i
^
2
3
j
^
−
1
−
5
k
^
1
2
<
b
r
/
><
b
r
/
>
∣
∣
=
3
i
^
−
j
^
−
7
k
^
∣
b
1
×
b
2
∣
=
9
+
1
+
49
=
59
Shortest Distance
=
∣
b
1
×
b
2
∣
(
a
2
−
a
1
)
⋅
(
b
1
×
b
2
)
=
59
(
i
−
k
^
)
⋅
(
3
i
^
−
j
^
−
7
k
^
)
=
59
10