Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If R ge r > 0 and d > 0, then 0<(d2+R2-r2/2dR) le1
Q. If
R
≥
r
>
0
and
d
>
0
,
then
0
<
2
d
R
d
2
+
R
2
−
r
2
≤
1
2524
224
Linear Inequalities
Report Error
A
is satisfied if
∣
d
−
R
∣
≤
r
23%
B
is satisfied if
∣
d
−
R
∣
≤
2
r
50%
C
is satisfied if
∣
d
−
R
∣
≥
r
18%
D
is not satisfied at all
9%
Solution:
Given
R
≥
r
>
0
and
d
>
0
⇒
0
<
2
d
R
d
2
+
R
2
−
r
2
≤
1
⇒
0
<
(
d
+
R
−
r
)
(
d
+
R
+
r
)
≤
2
d
R
;
which is true iff
(
d
2
+
R
2
−
r
2
)
≤
2
d
R
,
which is true iff
d
2
+
R
2
−
2
d
R
≤
r
2
⇒
(
d
−
R
)
2
≤
r
2
∣
d
−
R
∣
≤
r
,
which is also
−
r
≤
(
d
−
R
)
≤
r
∣
d
−
R
∣
≤
,
which is also
−
r
≤
(
d
−
R
)
≤
r