Q.
If quadratic equation x2+2(a+2b)x+(2a+b−1)=0 has unequal real roots for all b∈R then the possible values of a can be equal to
224
98
Complex Numbers and Quadratic Equations
Report Error
Solution:
The quadratic equation x2+2(a+2b)+(2a+b−1)=0 will have unequal real roots, if D=4(a+2b)2−4(2a+b−1)>0 ⇒a2+4b2+4ab>2a+b−1 ⇒4b2+(4a−1)b+(a2−2a+1)>0∀b∈R ∴(4a−1)2−16(a2−2a+1)<0 ⇒(16a2−8a+1)−(16a2−32a+16)<0 ⇒24a−15<0
Hence a<2415.
Now verify alternatives.