Q.
If principal argument of z0 satisfying ∣z−3∣≤2 and arg(z−5i)=4−π simultaneously is θ then identify the correct statement(s)?
1816
111
Complex Numbers and Quadratic Equations
Report Error
Solution:
arg(z−5i)=4−π is a ray emanating from (0,5) and making an angle 4π from the x-axis in clockwise direction. ⇒arg(x+i(y−5))=4−π⇒tan−1(xy−5)=4−π⇒y−5=−x⇒x+y=5
Also, ∣z−3∣≤2⇒∣(x−3)+iy∣≤2⇒(x−3)2+y2≤2 ⇒x+y=5 touches the circle. Let z0 be the complex number corresponding to point of contact.
Let z0=x0+iy0 x0=3+2cos4π=4 y0=2sin4π=1 ∴z0=4+i Now, tanθ=41 ⇒tan2θ=1−tan2θ2tanθ=1−1612⋅41=158
Also, ∣z0∣=17
and ∣z0−5i∣=∣4+i−5i∣=4∣1−i∣=42.