Q.
If PQ is a double ordinate of hyperbola a2x2+b2y2=1. Such that OPQ is an equilateral triangle, O being the centre of the hyperbola, then the eccentricity ′e′ of the hyperbola satisfies
Let P(asecθ,btanθ);Q(asecθ,−btanθ) be end
points of double ordinates and (0,0) is the centre of the hyperbola.
Now, PQ=2btanθ OQ=OP=a2sec2θ+b2tan2θ
Since, OQ=OP=PQ ∴4b2tan2θ=a2sec2θ+b2tan2θ ⇒3b2tan2θ=a2sec2θ ⇒3b2sin2θ=a2 ⇒3a2(e2−1)sin2θ=a2 ⇒3(e2−1)sin2θ=1 ⇒3(e2−1)1=sin2θ<1, ⇒e2−11<3 ⇒e2−1>31 ⇒e2>34 ∴e>32