Using C1→C1+C2+C3, we get Δ=(sinx+2cosx)∣∣111cosxsinxcosxcosxcosxsinx∣∣
Applying R2→R2−R1,R3→R3−R1, we get Δ=(sinx+2cosx)∣∣100cosxsin−cosx0cosx0sinx−cosx∣∣ =(sinx+2cosx)(sinx−cosx)2 Δ=0⇒tanx=−2,tanx=1. As −4π≤x≤4π,−1≤tanx≤1
Thus, tanx=1⇒x=π/4.