Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (-π/2) ≤ x ≤ (π/2), then the two curves y= cos x and y= sin 3 x intersect at
Q. If
2
−
π
≤
x
≤
2
π
, then the two curves
y
=
cos
x
and
y
=
sin
3
x
intersect at
153
167
Trigonometric Functions
Report Error
A
(
4
π
,
2
1
)
and
(
8
π
,
cos
8
π
)
B
(
−
4
π
,
2
1
)
and
(
8
−
π
,
cos
8
π
)
C
(
4
π
,
2
−
1
)
and
(
8
π
,
−
cos
8
π
)
D
(
4
−
π
,
2
1
)
Solution:
At the intersection point of
y
=
cos
x
and
y
=
sin
3
x
,
we have
cos
x
=
sin
3
x
⇒
cos
x
=
cos
(
2
π
−
3
x
)
⇒
x
=
2
nπ
±
(
2
π
−
3
x
)
⇒
x
=
4
π
,
8
π
[
∵
−
π
/2
≤
x
≤
π
/2
]
So,
y
=
cos
4
π
at
x
=
4
π
and
y
=
cos
8
π
,
at
x
=
8
π
Thus, the points are
(
4
π
,
2
1
)
and
(
8
π
,
cos
8
π
)