We have, dy+{yϕ′(x)−ϕ(x)ϕ′(x)}dx=0 ⇒dxdy​+ϕ′(x)⋅y=ϕ(x)ϕ′(x)
This is a linear differential equation. Here, I.F.=e∫ϕ′(x)dx=eϕ(x) ∴ Solution is, yeϕ(x)=∫Iϕ(x)​​IIeϕ(x)ϕ′(x)​​dx ⇒yeϕ(x)=ϕ(x)eϕ(x)−∫ϕ′(x)eϕ(x)dx ⇒y=(ϕ(x)−1)+Ce−ϕ(x).