Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\phi\left(x\right)$ is a differentiable function, then the solution of the differential equation
$dy+\left\{y\phi'\left(x\right) \phi\left(x\right)\phi'\left(x\right)\right\}dx=0$, is

Differential Equations

Solution:

We have,
$dy+\left\{y\phi'\left(x\right)-\phi\left(x\right)\phi'\left(x\right)\right\}dx=0$
$\Rightarrow \frac{dy}{dx}+\phi'\left(x\right)\cdot y=\phi\left(x\right)\phi'\left(x\right)$
This is a linear differential equation. Here,
$I.F.=e^{\int \phi'\left(x\right)dx}=e^{\phi\left(x\right)}$
$\therefore $ Solution is, $ye^{\phi\left(x\right)}=\int $ $\underbrace{\phi(x)}_I$ $\,\underbrace{e^{\phi\left(x\right)}\phi'\left(x\right)}_{II}dx$
$\Rightarrow ye^{\phi\left(x\right)}=\phi\left(x\right)e^{\phi\left(x\right)}-\int \phi'\left(x\right)e^{\phi\left(x\right)}dx$
$\Rightarrow y=\left(\phi\left(x\right)-1\right)+Ce^{-\phi\left(x\right)}$.