Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If φ(x)=f(x)+f(2 a-x) and f prime prime(x)>0, a>0,0 ≤ x ≤ 2 a then
Q. If
ϕ
(
x
)
=
f
(
x
)
+
f
(
2
a
−
x
)
and
f
′′
(
x
)
>
0
,
a
>
0
,
0
≤
x
≤
2
a
then
410
156
Application of Derivatives
Report Error
A
ϕ
(
x
)
increases in
(
a
,
2
a
)
B
ϕ
(
x
)
increases in
(
0
,
a
)
C
ϕ
(
x
)
decreases in
(
0
,
a
)
D
ϕ
(
x
)
decreases in
(
a
,
2
a
)
Solution:
ϕ
(
x
)
=
f
(
x
)
+
f
(
2
a
−
x
)
ϕ
′
(
x
)
=
f
′
(
x
)
+
f
′
(
2
a
−
x
)
Since
f
′′
(
x
)
>
0
⇒
f
′
(
x
)
is an increasing function
hence
f
′
(
x
)
>
f
ϕ
(
2
a
−
x
)
⇒
x
>
2
a
−
x
⇒
x
>
a
∴
f
′
(
x
)
>
0
if
x
>
a
⇒
f
(
x
)
is
↑
in
(
a
,
2
a
)
∥
∥
ly
f
(
x
)
is
↓
in
(
0
,
a
)