Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If φ(x)=(1/√ x ) ∫ limits(π/4)x(4 √2 sin t-3 φ prime(t)) dt , x>0, then φ prime((π/4)) is equal to :
Q. If
ϕ
(
x
)
=
x
1
4
π
∫
x
(
4
2
sin
t
−
3
ϕ
′
(
t
)
)
d
t
,
x
>
0
, then
ϕ
′
(
4
π
)
is equal to :
1024
141
JEE Main
JEE Main 2023
Integrals
Report Error
A
6
+
π
4
B
6
+
π
8
C
π
8
D
6
−
π
4
Solution:
ϕ
′
(
x
)
=
x
1
[
(
4
2
sin
x
−
3
ϕ
′
(
x
)
)
⋅
1
−
0
]
−
2
1
x
−
3/2
4
π
∫
x
(
4
2
sin
t
−
3
ϕ
′
(
t
)
)
d
t
ϕ
′
(
4
π
)
=
π
2
[
4
−
3
ϕ
′
(
4
π
)
]
+
0
(
1
+
π
6
)
ϕ
′
(
4
π
)
=
π
8
ϕ
′
(
4
π
)
=
π
+
6
8