Let first term of an A.P. be a and c.d. be d and first term of a G.P. be A and c.r. be R,then a+(p−1)d=ARp−1=x ⇒p−1=(x−a)/d...(1) a+(q−1)d=Arq−1=y ⇒q−1=(y−a)/d...(2) a+(r−1)d=ARr−1=z r−1=(z−a)/d...(3) ∴ Given expression =(ARp−1)y−z⋅(ARq−1)z−x⋅(ARr−1)x−y =A0R(p−1)(y−z)+(q−1)(z−x)+(r−1)(x−y) =A0R[(x−a)(y−z)+(y−a)(z−x)+(z−a)(x−y)]/d[By(1),(2)] =A0R0=1