p,q,r the roots of equation , ∣∣x111x222x∣∣=0
Operating C1→C1+C2+C3, we get ∣∣x+3x+3x+31x222x∣∣=0 ⇒(x+3)∣∣1111x222x∣∣=0
Operating R2→R2−R1,R3→R3−R1 ⇒(x+3)∣∣1001x−1120x−2∣∣
Expanding along C1, we get (x+3)[(x−l)(x−2)−0]=0x=1,2,−3 i.e., roots of equation
Let p=1,q=2,r=−3. ∴p2+q2+r2p4+q4+r4=1+4+91+16+81=1498=7