Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If p, q, r are positive and are in A.P., the roots of quadratic equation p x2+q x+r=0 are all real for
Q. If
p
,
q
,
r
are positive and are in A.P., the roots of quadratic equation
p
x
2
+
q
x
+
r
=
0
are all real for
2298
277
Sequences and Series
Report Error
A
∣
∣
​
p
r
​
−
7
∣
∣
​
≥
4
3
​
B
∣
∣
​
r
p
​
−
7
∣
∣
​
≥
4
3
​
C
all
p
and
r
D
no
p
and
r
Solution:
Since
p
,
q
,
r
are in A.P. so
2
q
=
p
+
r
.
The roots of the equation
p
x
2
+
q
x
+
r
=
0
are real if and only if
q
2
−
4
p
r
≥
0
⇒
(
2
p
+
r
​
)
2
−
4
p
r
≥
0
⇒
p
2
+
r
2
−
14
p
r
≥
0
⇒
r
2
p
2
​
−
14
r
p
​
+
1
≥
0
⇒
(
r
p
​
−
7
)
2
−
48
≥
0
⇒
∣
∣
​
r
p
​
−
7
∣
∣
​
≥
4
3
​