Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If p + q + r = 0 = a + b + c, then the value of the determinant |pa&pb&rc qc &ra&pb rb &pc&qa| is :
Q. If p + q + r = 0 = a + b + c, then the value of the determinant
∣
∣
p
a
q
c
r
b
p
b
r
a
p
c
rc
p
b
q
a
∣
∣
is :
2265
235
Determinants
Report Error
A
0
32%
B
pa + qb + rc
32%
C
1
21%
D
none of these
14%
Solution:
Let
A
=
∣
∣
p
a
q
c
r
b
p
b
r
a
p
c
rc
p
b
q
a
∣
∣
=
p
a
(
a
2
q
r
−
p
2
b
c
)
−
q
b
(
q
2
a
c
−
b
2
p
r
)
+
rc
(
c
2
pq
−
r
2
ab
)
=
a
3
pq
r
−
p
3
ab
c
−
q
3
ab
c
+
b
3
pq
r
+
c
3
pq
r
−
r
3
ab
c
=
−
ab
c
[
p
3
+
q
3
+
r
3
]
+
pq
r
[
a
3
+
b
3
+
c
3
]
=
0
(
∵
p
+
q
+
r
=
a
+
b
+
c
=
0
)