Q.
If PQ is a double ordinate of the hyperbola a2x2−b2y2=1 such that OPQ is an equilateral triangle, O being the centre of the hyperbola, then the eccentricitye of the hyperbola satisfies
Let the hyperbola a2x2−b2y2=1 and any double ordinate PQ be ( asecθ,btanθ), ( secθ,−btanθ)⋅O is the centre (0,0). △OPQ is equilateral.
So tan30∘=asecθbtanθ ⇒3a2b2=cosec2θ ⇒3(e2−1)=cosec2θ Now cosec2θ≥1
Now cosec2θ≥1 ⇒3(e2−1)≥1⇒e2≥34⇒e>32