Q.
If PQ is a double ordinate of the hyperbola a2x2−b2y2=1 such that OPQ is an equilateral triangle, O bing the centre of the hyperbola, then the eccentricity e of the hyperbola satisfies.
Let the hyperbola be a2x2−b2y2=1 and any double ordinate PQ be (asecθ,btanθ),(asecθ,−btanθ) and O is centre (0,0) ΔOPQ being equilateral. ∴tan30∘=asecθbtanθ ⇒3⋅a2b2=cosce2θ ⇒3(e2−1)=cosce2θ
Now, cosec2θ≥1 ∴3(e2−1)≥1 ⇒e2≥34 ⇒e>2/3