Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If p,q and r are perpendicular to q+r,r+p and p+q respectively and if |p+q|=6, |q+r|=4√3 and |r+p|=4, then |p+q+r| is
Q. If
p
,
q
and
r
are perpendicular to
q
+
r
,
r
+
p
and
p
+
q
respectively and if
∣
p
+
q
∣
=
6
,
∣
q
+
r
∣
=
4
3
and
∣
r
+
p
∣
=
4
,
then
∣
p
+
q
+
r
∣
is
2994
224
KEAM
KEAM 2010
Vector Algebra
Report Error
A
5
2
B
10
C
15
D
5
E
25
Solution:
p
⊥
(
q
+
r
)
⇒
p
.
(
q
+
r
)
=
0
⇒
p
.
q
+
p
.
r
=
0
.. (i)
q
⊥
(
r
+
p
)
⇒
q
.
(
r
.
p
)
=
0
⇒
q
.
r
+
q
.
p
=
0
.. (ii)
r
⊥
(
p
+
q
)
⇒
r
.
(
p
+
q
)
=
0
⇒
r
.
p
+
r
.
q
=
0
.. (iii)
Adding Eqs. (i), (ii) and (iii),
we get
p
.
q
+
q
.
r
+
r
.
p
=
0
...(iv)
Now,
∣
p
+
q
∣
=
6
⇒
(
p
+
q
)
.
(
p
+
q
)
=
36
⇒
∣
p
∣
2
+
p
.
q
+
q
.
p
+
∣
q
∣
2
=
36
...(v)
Similarly,
∣
q
+
r
=
4
3
⇒
∣
q
∣
2
+
q
.
r
+
r
.
q
+
∣
r
∣
2
=
48
...(vi)
and
∣
r
+
p
∣
=
4
⇒
∣
r
∣
2
+
r
.
p
+
p
.
r
+
∣
p
∣
2
=
16
..(vii)
Adding Eqs. (v), (vi) and (vii), we get
2∣
p
∣
2
+
2∣
q
∣
2
+
2∣
r
∣
2
+
2
(
p
.
q
+
q
.
r
+
r
.
p
)
=
100
⇒
∣
p
∣
2
+
∣
q
∣
2
+
∣
r
∣
2
=
2
100
=
50
...(viii) [using Eq.(iv)] Now,
(
P
+
q
+
r
)
2
=
∣
p
∣
+
∣
q
∣
2
+
∣
r
∣
2
+
2
(
p
.
q
+
q
.
r
+
r
.
p
)
=
50
[using Eqs. (iv) and (viii)]
⇒
∣
p
+
q
+
r
∣
=
5
2