Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ \overrightarrow{p},\overrightarrow{q} $ and $ \overrightarrow{r} $ are perpendicular to $ \overrightarrow{q}+\overrightarrow{r},\overrightarrow{r}+\overrightarrow{p} $ and $ \overrightarrow{p}+\overrightarrow{q} $ respectively and if $ |\overrightarrow{p}+\overrightarrow{q}|=6, $ $ |\overrightarrow{q}+\overrightarrow{r}|=4\sqrt{3} $ and $ |\overrightarrow{r}+\overrightarrow{p}|=4, $ then $ |\overrightarrow{p}+\overrightarrow{q}+\overrightarrow{r}| $ is

KEAMKEAM 2010Vector Algebra

Solution:

$ \overrightarrow{p}\bot (\overrightarrow{q}+\overrightarrow{r})\Rightarrow \overrightarrow{p}.(\overrightarrow{q}+\overrightarrow{r})=0 $
$ \Rightarrow $ $ \overrightarrow{p}.\overrightarrow{q}+\overrightarrow{p}.\overrightarrow{r}=0 $ .. (i)
$ \overrightarrow{q}\bot (\overrightarrow{r}+\overrightarrow{p})\Rightarrow \overrightarrow{q}.(\overrightarrow{r}.\overrightarrow{p})=0 $
$ \Rightarrow $ $ \overrightarrow{q}.\overrightarrow{r}+\overrightarrow{q}.\overrightarrow{p}=0 $ .. (ii)
$ \overrightarrow{r}\bot (\overrightarrow{p}+\overrightarrow{q})\Rightarrow \overrightarrow{r}.(\overrightarrow{p}+\overrightarrow{q})=0 $
$ \Rightarrow $ $ \overrightarrow{r}.\overrightarrow{p}+\overrightarrow{r}.\overrightarrow{q}=0 $ .. (iii)
Adding Eqs. (i), (ii) and (iii),
we get $ \overrightarrow{p}.\overrightarrow{q}+\overrightarrow{q}.\overrightarrow{r}+\overrightarrow{r}.\overrightarrow{p}=0 $ ...(iv)
Now, $ |\overrightarrow{p}+\overrightarrow{q}|=6\Rightarrow (\overrightarrow{p}+\overrightarrow{q}).(\overrightarrow{p}+\overrightarrow{q})=36 $
$ \Rightarrow $ $ |\overrightarrow{p}{{|}^{2}}+\overrightarrow{p}\,.\,\overrightarrow{q}+\overrightarrow{q}\,.\,\overrightarrow{p}+|\overrightarrow{q}{{|}^{2}}=36 $ ...(v)
Similarly, $ |\overrightarrow{q}+\overrightarrow{r}=4\sqrt{3} $
$ \Rightarrow $ $ |\overrightarrow{q}{{|}^{2}}+\overrightarrow{q}.\,\overrightarrow{r}+\overrightarrow{r}.\,\overrightarrow{q}+|\overrightarrow{r}{{|}^{2}}=48 $ ...(vi)
and $ |\overrightarrow{r}+\overrightarrow{p}|=4 $
$ \Rightarrow $ $ |\overrightarrow{r}{{|}^{2}}+\overrightarrow{r}.\overrightarrow{p}+\overrightarrow{p}.\overrightarrow{r}+|\overrightarrow{p}{{|}^{2}}=16 $ ..(vii)
Adding Eqs. (v), (vi) and (vii), we get
$ 2|\overrightarrow{p}{{|}^{2}}+2|\overrightarrow{q}{{|}^{2}}+2|\overrightarrow{r}{{|}^{2}}+2(\overrightarrow{p}.\overrightarrow{q}+\overrightarrow{q}.\overrightarrow{r}+\overrightarrow{r}.\overrightarrow{p}) $
$=100 $
$ \Rightarrow $ $ |\overrightarrow{p}{{|}^{2}}+|\overrightarrow{q}{{|}^{2}}+|\overrightarrow{r}{{|}^{2}}=\frac{100}{2}=50 $ ...(viii) [using Eq.(iv)] Now, $ {{(P+q+r)}^{2}} $
$=|\overrightarrow{p}|+|\overrightarrow{q}{{|}^{2}}+|\overrightarrow{r}{{|}^{2}}+2(\overrightarrow{p}.\overrightarrow{q}+\overrightarrow{q}.\overrightarrow{r}+\overrightarrow{r}.\overrightarrow{p}) $
$=50 $ [using Eqs. (iv) and (viii)]
$ \Rightarrow $ $ |\overrightarrow{p}+\overrightarrow{q}+\overrightarrow{r}|=5\sqrt{2} $