Since, p, q>0 therefore pq>0
and tan−1(1+pqp−q)=tan−1p−tan−1q…(i)
Since, qr>−1 ∴tan−1(1+qrq−r)=tan−1q−tan−1r…(ii)
and since pr<−1 and r<0 ∴tan−1(1+rpr−p)=π+tan−1r−tan−1p…(iii)
On adding Eqs. (i), (ii) and (iii), we get tan−1(1+pqp−q)+tan−1(1+qrq−r)+tan−1(1+rpr−p) =π