Q.
If p,p′ denote the lengths of the perpendiculars from the focus and the centre of an ellipse with semi major axis of length a respectively on a tangent to the ellipse and r denotes the focal distance of the point, then
Tangent to the ellipse a2x2+b2y2=1 at (acosθ,bsinθ) is axcosθ+bysinθ=1… (i) ∴p= perpendicular distance from focus (ae,0) to the line (i) =a2cos2θ+b2sin2θ−∣a∣ϵcosθ+0−1∣ =a2cos2θ+b2sin2θ1−ecosθ.. (i)
Also, p′= perpendicular distance from centre (0,0) to the line (i) =a2cos2θ+b2sin2θ1 (ii)
Again, r=SP=a(1−ecosθ) ∴ap=a2cos2θ+b2sin2θa−aecosθ=rp′