Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If P is a complex number whose modulus is one, then the equation ((1+i z/1-i z))4=P has
Q. If
P
is a complex number whose modulus is one, then the equation
(
1
−
i
z
1
+
i
z
)
4
=
P
has
2192
185
TS EAMCET 2019
Report Error
A
real and equal roots
B
real and distinct roots
C
two real and two complex roots
D
all complex roots
Solution:
We have,
(
1
−
i
z
1
+
i
z
)
4
=
P
⇒
(
i
+
z
i
−
z
)
4
=
P
⇒
(
z
+
i
z
−
i
)
4
=
P
⇒
∣
∣
z
+
i
z
−
i
∣
∣
4
=
∣
P
∣
⇒
∣
∣
z
+
i
z
−
i
∣
∣
4
=
1
[
∵
∣
P
∣
=
1
]
⇒
∣
z
−
i
∣
4
=
∣
z
+
i
∣
4
⇒
∣
z
−
i
∣
=
∣
z
+
i
∣
∴
z
lies on perpendicular bisector of
i
and
−
i
∴
z
lies on
y
-axis.
∴
z
has all complex roots.