Q.
If P(h,k) be a point on the parabola x=4y2, which is nearest to the point Q(0,33), then the distance of P from the directrix of the parabola y2=4(x+y) is equal to :
Equation of normal y=−tx+2at+at3 y=−tx+162t+161t3
It passes through (0,33) 33=8t+16t3 t3+2t−528=0 (t−8)(t2+8t+66)=0 t=8 P(at2,2at)=(161×64,2×161×8)=(4,1)
Parabola : y2=4(x+y) ⇒y2−4y=4x ⇒(y−2)2=4(x+1)
Equation of directix :- x+1=−1 x=−2
Distance of point =6
Ans. : (4)