Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If P be the sum of odd terms and Q that of even terms in the expansion of (x + a)n, then the value of [(x + a)2n - (x - a)2n] equals
Q. If
P
be the sum of odd terms and
Q
that of even terms in the expansion of
(
x
+
a
)
n
, then the value of
[(
x
+
a
)
2
n
−
(
x
−
a
)
2
n
]
equals
2538
224
Binomial Theorem
Report Error
A
PQ
0%
B
2
PQ
25%
C
4
PQ
58%
D
None of these
17%
Solution:
(
x
+
a
)
n
=
(
t
1
+
t
3
+
t
5
+
...
)
+
(
t
2
+
t
4
+
t
6
+
...
)
∴
(
x
+
a
)
n
=
P
+
Q
…
(
i
)
and
(
x
−
a
)
n
=
(
t
1
+
t
3
+
t
5
+
...
)
−
(
t
2
+
t
4
+
t
6
+
...
)
(
x
−
a
)
n
=
P
−
Q
…
(
ii
)
Squaring and subtracting
(
ii
)
from
(
i
)
, we get
(
x
+
a
)
2
n
−
(
x
−
a
)
2
n
=
(
P
+
Q
)
2
−
(
P
−
Q
)
2
=
4
PQ