Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If P(B)=(3/5), P(A | B)=(1/2) and P(A∪ B)=(4/5), then P(A∪ B)' +P(A'∪ B)=
Q. If
P
(
B
)
=
5
3
,
P
(
A
∣
B
)
=
2
1
and
P
(
A
∪
B
)
=
5
4
, then
P
(
A
∪
B
)
′
+
P
(
A
′
∪
B
)
=
5520
218
Probability - Part 2
Report Error
A
5
1
19%
B
5
4
40%
C
2
1
21%
D
1
19%
Solution:
P
(
B
)
=
5
3
,
P
(
A
∣
B
)
=
2
1
,
P
(
A
∪
B
)
=
5
4
P
(
A
∩
B
)
=
P
(
A
∣
B
)
P
(
B
)
=
2
1
⋅
5
3
=
10
3
P
(
A
∪
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
∩
B
)
⇒
5
4
=
P
(
A
)
+
5
3
−
10
3
⇒
P
(
A
)
=
5
4
−
10
3
=
2
1
P
(
A
′
)
=
1
−
P
(
A
)
=
1
−
2
1
=
2
1
We know,
P
(
A
∩
B
)
+
P
(
A
′
∩
B
)
=
P
(
B
)
[as
A
∩
B
and
A
′
∩
B
are mutually exclusive events]
⇒
10
3
+
P
(
A
′
∩
B
)
=
5
3
⇒
P
(
A
′
∩
B
)
=
5
3
−
10
3
=
10
3
Now,
P
(
A
′
∪
B
)
=
P
(
A
′
)
+
P
(
B
)
−
P
(
A
′
∩
B
)
=
2
1
+
5
3
−
10
3
=
10
5
+
6
−
3
=
5
4
P
(
(
A
∪
B
)
′
)
=
1
−
P
(
A
∪
B
)
=
1
−
5
4
=
5
1
∴
P
(
(
A
∪
B
)
′
)
+
P
(
A
′
∪
B
)
=
5
1
+
5
4
=
1