Q.
If P and Q are points with eccentric angles θ and (θ+6π) on the ellipse 16x2+4y2=1, then the area (in sq. units) of the triangle OPQ (where O is the origin) is equal to
Let, P=(4cosθ,2sinθ) and Q=(4cos(θ+6π),2sin(θ+6π)) ⇒AreaofΔOPQ=21∣∣4cosθ4cos(θ+6π)02sinθ2sin(θ+6π)0111∣∣ =4(cosθsin(θ+6π)−cos(θ+6π)sinθ) =4sin(θ+6π−θ)=4sin6π=2 sq. units