Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If p 1, p 2, p 3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then ( cos A / p 1)+( cos B / p 2)+( cos C / p 3) is equal to
Q. If
p
1
,
p
2
,
p
3
are respectively the perpendiculars from the vertices of a triangle to the opposite sides, then
p
1
c
o
s
A
+
p
2
c
o
s
B
+
p
3
c
o
s
C
is equal to
1718
202
Trigonometric Functions
Report Error
A
r
1
B
R
1
C
N
R
D
None of these
Solution:
We have,
Δ
=
2
1
a
p
1
=
2
1
b
p
2
=
2
1
c
p
3
∴
p
1
1
=
2Δ
a
,
p
2
1
=
2Δ
b
,
p
3
1
=
2Δ
c
p
1
c
o
s
A
+
p
2
c
o
s
B
+
p
3
c
o
s
C
=
2Δ
1
(
a
cos
A
+
b
cos
B
+
c
cos
C
)
=
Δ
R
(
sin
A
cos
A
+
sin
B
cos
B
+
sin
C
cos
C
)
=
2Δ
R
(
sin
2
A
+
sin
2
B
+
sin
2
C
)
=
R
2Δ
4
s
i
n
A
s
i
n
B
s
i
n
C
=
(
4
R
ab
c
)
2
R
×
2
R
a
×
2
R
b
×
2
R
c
=
R
1