Q.
If P1 and P2 are the lengths of the perpendiculars drawn from the points (a2−b2,0) and (−a2−b2,0) respectively, to the line axcosθ+bysinθ=1 then
Given, equation of line is axcosθ+bysinθ=1 ⇒abbxcosθ+aysinθ=1 ⇒bxcosθ+aysinθ=ab ⇒bxcosθ+aysinθ−ab=0.....(i)
At point (a2−b2,0), the perpendicular distance from line (i) is p1=∣∣A2+B2Ax1+By1+C∣∣ =∣∣b2cos2θ+a2sin2θba2−b2cosθ−0−ab∣∣ (∵A=bcosθ,B=asinθ,C=−ab;x1=a2−b2,y1=0)
and at point (−a2−b2,0), the perpendicular distance from line (i) is p2=∣∣b2cos2θ+a2sin2θ−ba2−b2cosθ−ab∣∣ (∵A=bcosθ,B=asinθ,C=−ab,x1=−a2−b2,y1=0) ∴p1p2=∣∣b2cos2θ+a2sin2θba2−b2cosθ−ab∣∣ ×∣∣b2cos2θ+a2sin2θ−ba2−b2cosθ−ab∣∣ =(b2cos2θ+a2sin2θ)b∣a2−b2cosθ−a∣×b∣a2−b2cosθ+a∣ =(b2cos2θ+a2sin2θ)b2∣(a2−b2)cos2θ−a2∣ [∵(A+B)(A−B)=A2−B2] =(b2cos2θ+a2sin2θ)b2∣a2cos2θ−b2cos2θ−a2∣ =(b2cos2θ+a2sin2θ)b2∣a2(cos2θ−1)−b2cos2θ∣ ⇒p1p2=(b2cos2θ+a2sin2θ)b2∣−a2sin2θ−b2cos2θ∣ (∵sin2θ+cos2θ=1) =(b2cos2θ+a2sin2θ)b2∣a2sin2θ+b2cos2θ∣(∵∣−A∣=∣A∣) ∴p1p2=b2