Given vectors OA=2i+2j+k
and OB=2i^+4j^+4k^ ∣OA∣=4+4+1=3=m( let ) and ∣OB∣=4+16+16=6=n (let) ∵ The angle bisector of ∠BOA intersect the side AB at point P in the ratio 3:6=1:2 so OP=32(OA)+1(OB) =36i^+8j^+6k^=2i^+38j^+2k^ ∴∣OP∣=z2+(38)2+22 =4+964+4 =972+64=9136=k ∴9k2=9(9136)=136