Let the roots of the equation x2−x−k=0 are α and α2 . Then, α+α2=1 ..(i) and α.α2=α3=−k⇒α=(−k)1/3 On putting this value of a in Eq. (i), we get (−k)1/3+(−k)2/3=1 ?(ii) On cubing both sides, we get (−k)+(−k)2+3k[(−k)1/3+(−k)2/3]=1⇒−k+k2−3k(k2/3−k1/3)=1⇒k2−k−3k(1)=1 [Using Eq.(ii)] ⇒k2−4k−1=0⇒lk=24±20=2±5