Let one root be α
Then the other root is αn
So,product of roots =ac ∴(α)(αn)=ac ∴αn+1=ac ∴α=(ac)n+11...(1)
sum of roots =−ab ∴α+αn=−ab
Substituting the value of α from equation (1), we get ∴(ac)n+11+(ac)n+1n=−ab ∴an+1nCn+11+an+11Cn+1n=−b