Q.
If ω is the non-real cube root of unity, then the number of ordered pairs of integers (a,b) , such that ∣aω+b∣=1 , is equal to
1904
204
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Answer: 6
Solution:
We have, ∣aω+b∣2=1 ⇒(aω+b)(aω−+b)=1 ⇒a2+ab(ω+ω−)+b2=1 ⇒a2−ab+b2=1 ⇒(a−b)2+ab=1…..(i) (As,1+ω+(ω)2=0)
When (a−b)2=0 and ab=1 then (1,1);(−1,−1)
When (a−b)2=1 and ab=0 then (0,1);(1,0);(0,−1);(−1,0)
Hence, (0,1);(1,0);(0,−1);(−1,0);(1,1);(−1,−1) i.e., 6 ordered pairs.