Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ω is an imaginary cube root of unity, then the value of the determinant |1+ω&ω2&-ω 1+ω2&ω&-ω2 ω+ω2&ω&-ω2|
Q. If
ω
is an imaginary cube root of unity, then the value of the determinant
∣
∣
1
+
ω
1
+
ω
2
ω
+
ω
2
ω
2
ω
ω
−
ω
−
ω
2
−
ω
2
∣
∣
1819
223
WBJEE
WBJEE 2015
Determinants
Report Error
A
−
2
ω
6%
B
−
3
ω
2
29%
C
−
1
23%
D
0
42%
Solution:
∣
∣
1
+
ω
1
+
ω
2
ω
+
ω
2
ω
2
ω
ω
−
ω
−
ω
2
ω
2
∣
∣
=
∣
∣
0
0
−
1
+
ω
ω
2
ω
ω
−
ω
−
ω
2
−
ω
2
∣
∣
[
∵
C
1
→
C
1
+
C
2
]
=
(
−
1
+
ω
)
(
−
ω
4
+
ω
2
)
=
(
ω
−
1
)
(
ω
2
−
ω
)
=
ω
3
−
ω
2
−
ω
2
+
ω
=
−
3
ω
2