Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ω is a complex cube root of unity, then for any n>1, displaystyle ∑r=1n-1 r(r-1-ω)(r+1-ω2)=
Q. If
ω
is a complex cube root of unity, then for any
n
>
1
,
r
=
1
∑
n
−
1
r
(
r
−
1
−
ω
)
(
r
+
1
−
ω
2
)
=
1379
207
AP EAMCET
AP EAMCET 2017
Report Error
A
4
n
2
(
n
+
1
)
2
B
6
n
(
n
+
1
)
(
2
n
+
1
)
C
4
n
(
n
−
1
)
(
n
2
+
3
n
+
4
)
D
4
n
(
n
+
1
)
(
2
n
+
1
)
Solution:
Consider,
I
=
1
∑
n
−
1
r
(
r
+
1
−
w
)
(
r
+
1
−
w
2
)
=
I
=
1
∑
n
−
1
r
(
(
r
+
1
)
2
−
(
r
+
1
)
(
w
+
w
2
)
+
w
3
)
=
I
=
1
∑
n
−
1
r
(
(
r
+
1
)
2
−
(
r
+
1
)
(
−
1
)
+
1
)
[
∵
w
3
=
1
and
1
+
w
+
w
2
=
01
=
I
=
1
∑
n
−
1
r
(
r
2
+
3
r
+
3
)
=
I
=
1
∑
n
−
1
(
r
3
+
3
r
2
+
3
r
)
=
I
=
1
∑
n
−
1
r
3
+
3
I
=
1
∑
n
−
1
r
2
+
3
I
=
1
∑
n
−
1
r
=
(
2
(
n
−
1
)
n
)
2
+
6
3
(
n
−
1
)
(
n
)
(
2
n
−
1
)
+
2
3
(
n
−
1
)
n
4
n
2
(
n
−
1
)
2
+
2
n
(
n
−
1
)
(
2
n
−
1
)
+
2
3
n
(
n
−
1
)
=
4
n
(
n
−
1
)
[
n
(
n
−
1
)
+
2
(
2
n
−
1
)
+
6
]
=
4
n
(
n
−
1
)
[
n
2
−
n
+
4
n
−
2
+
6
]
=
4
n
(
n
−
1
)
[
n
2
+
3
n
+
4
]