Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If ω is a complex cube root of unity, then ((1-√3 i/2))2020+((1+√3 i/2))2026+ sin ( displaystyle∑j=16(j+ω)(j+ω2) (3 π/152)) =
Q. If
ω
is a complex cube root of unity, then
(
2
1
−
3
i
)
2020
+
(
2
1
+
3
i
)
2026
+
sin
(
j
=
1
∑
6
(
j
+
ω
)
(
j
+
ω
2
)
152
3
π
)
=
1479
213
TS EAMCET 2020
Report Error
A
-2
B
2
C
-1
D
0
Solution:
We have
2
1
−
3
i
=
−
[
2
−
1
+
3
i
]
=
−
ω
and
2
1
+
3
i
2
1
+
3
i
=
−
ω
2
∴
(
2
1
−
3
i
)
2020
+
(
2
1
+
3
i
)
2026
=
(
−
ω
)
2020
+
(
−
ω
2
)
2026
=
ω
2020
+
ω
4052
=
ω
+
ω
2
=
−
1
Now,
j
=
1
∑
6
(
j
+
ω
)
(
j
+
ω
2
)
=
j
=
1
∑
6
(
j
2
+
j
ω
2
+
jω
+
ω
3
)
=
j
=
1
∑
6
(
j
2
−
j
+
1
)
=
j
=
1
∑
6
j
2
−
j
=
1
∑
6
j
+
j
=
1
∑
6
1
=
6
6
(
6
+
1
)
(
12
+
1
)
−
2
6
(
6
+
1
)
+
6
=
7
×
13
−
3
×
7
+
6
=
91
−
21
+
6
=
76
∴
sin
(
j
=
1
∑
6
(
j
+
ω
)
(
j
+
ω
2
)
152
3
π
)
=
sin
(
152
76
×
3
π
)
=
sin
2
3
π
=
−
1
∴
(
2
1
−
3
i
)
2020
+
(
2
1
+
3
i
)
2026
+
sin
(
j
=
1
∑
6
(
j
+
ω
)
(
j
+
ω
2
)
512
3
π
)
=
−
1
−
1
=
−
2