Q.
If $\omega$ is a complex cube root of unity, then
$\left(\frac{1-\sqrt{3 i}}{2}\right)^{2020}+\left(\frac{1+\sqrt{3 i}}{2}\right)^{2026}+\sin \left(\displaystyle\sum_{j=1}^{6}(j+\omega)\left(j+\omega^{2}\right) \frac{3 \pi}{152}\right) = $
TS EAMCET 2020
Solution: