Q.
If n is an even integer, then the value of nC0+nC2+nC4+....+nCn equals to
4838
165
J & K CETJ & K CET 2012Binomial Theorem
Report Error
Solution:
We know that, (1+x)n=nC0+nC1x+nC2x2+....+nCnxn ..(i)
and (1−x)n=nC0−nC1x+nC2x2 +...+(−1)nCnxn ..(ii)
On adding Eqs. (i) and (ii), we get (1+x)n+(1−x)n=2[nC0+nC2x2+....+nCnxn] nC0+nC2+....+nCn=22n =2n−1