Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If n ∈ N and In =∫ ( log x)n dx , then In+nIn-1 is equal to
Q. If
n
∈
N
and
I
n
=
∫
(
lo
g
x
)
n
d
x
, then
I
n
+
n
I
n
−
1
is equal to
3918
208
KCET
KCET 2012
Integrals
Report Error
A
n
+
1
(
l
o
g
x
)
n
+
1
18%
B
x
(
lo
g
x
)
n
+
c
57%
C
(
lo
g
x
)
n
−
1
15%
D
n
(
l
o
g
x
)
n
10%
Solution:
Here ,
I
n
=
∫
(
l
o
g
x
)
n
d
x
On initegrating by parts, we get
I
n
=
(
l
o
g
x
)
n
⋅
x
−
∫
x
⋅
n
(
l
o
g
x
)
n
−
1
x
1
d
x
I
n
=
x
(
l
o
g
x
)
n
−
n
I
n
−
1
∴
I
n
+
n
I
n
−
1
=
x
(
l
o
g
x
)
n
+
C