For (a,b),(c,d)∈N×N (a,b)R(c,d) ⇒ad(b+c)=bc(a+d)
Reflexive Since, ab(b+a)=ba(a+b),∀ab∈N ∴(a,b)R(a,b)
So, R is reflexive.
Symmetric For (a,b),(c,d)∈N×N,
Let (a,b)R(c,d) ∴ad(b+c)=bc(a+d) ⇒bc(a+d)=ad(b+c) ⇒cd(d+a)=da(c+b) ⇒(c,d)R(a,b)
So, R is symmetric.
Transitive For (a,b),(c,d),(e,f)∈N×N
Let (a,b)R(c,d),(c,d)R(e,f) ∴ad(b+c),=bc(a+d),cf(d+e)=de(c+f) ⇒adb+adc=bca+bcd…(i)
and cfd+cfe=dec+def…(ii)
On multiplying Eq. (i) by ef and Eq. (ii) by ab,
then we get adbef+adcef+cfdab+cfeab =bcuef+bcdef+decub+defub ⇒adcf(b+e)=bcde(a+f) ⇒af(b+e)=be(a+f) ⇒(a,b)R(e,f)
So, R is transitive.
Hence R is an equivalence relation.