Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If nCr-1=28, nCr=56 and nCr+1=70, then the value of r is equal to
Q. If
n
C
r
−
1
=
28
,
n
C
r
=
56
and
n
C
r
+
1
=
70
, then the value of
r
is equal to
2773
203
KEAM
KEAM 2011
Permutations and Combinations
Report Error
A
1
B
2
C
3
D
4
E
5
Solution:
n
C
r
−
1
=
28
,
n
C
r
=
56
⋅
n
C
r
+
1
=
70
⇒
n
C
r
−
1
n
C
r
=
28
56
⇒
(
r
−
1
)!
(
n
−
r
+
1
)
(
n
−
r
)!
n
!
r
(
r
−
1
)!
(
n
−
r
)!
n
!
=
n
−
r
+
1
=
2
r
⇒
n
−
3
r
=
−
1
…
(
i
)
n
C
r
n
C
r
+
1
=
56
70
⇒
n
!
(
r
+
1
)!
(
n
−
r
−
1
)!
n
!
r
!
(
n
−
r
)!
n
!
=
28
35
⇒
r
!
(
n
−
r
)
(
n
−
r
−
1
)!
35
n
!
(
r
+
1
)
r
!
(
n
−
r
−
1
)!
=
28
35
⇒
r
+
1
n
−
r
=
28
35
⇒
28
n
−
28
r
=
35
r
+
35
⇒
28
n
−
63
r
=
35
…
(
ii
)
Multiply by 21 in Eq. (i) and subtracting from Eq. (ii),
21
n
−
63
r
=
−
21
28
n
−
63
r
=
35
−
7
n
=
−
56
⇒
n
=
8
−
+
−
From Eq. (i),
3
r
=
n
+
1
=
8
+
1
r
=
3