Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If maximum distance of any point on the curve 5 x2+4 y2 +x y-2=0 from its centre be L and L=(a/√b-√2), then (b-a) is
Q. If maximum distance of any point on the curve
5
x
2
+
4
y
2
+
x
y
−
2
=
0
from its centre be
L
and
L
=
b
−
2
a
, then
(
b
−
a
)
is
261
166
Conic Sections
Report Error
Answer:
7
Solution:
Centre
(
0
,
0
)
.
Let
P
(
r
cos
θ
,
r
sin
θ
)
be any point on ellipse
⇒
r
2
=
9
+
c
o
s
2
θ
+
s
i
n
2
θ
4
r
m
a
x
=
9
−
2
2