Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
if matrix A = [a&b&c b&c&a c&a&b]where a, b, c are real positive numbers, abc = 1 and ATA = I, then the value of a3 + b3 +c3 is
Q. if matrix
A
=
⎣
⎡
a
b
c
b
c
a
c
a
b
⎦
⎤
where
a
,
b
,
c
are real positive numbers,
ab
c
=
1
and
A
T
A
=
I
, then the value of
a
3
+
b
3
+
c
3
is
4159
195
Matrices
Report Error
A
1
18%
B
2
12%
C
3
20%
D
4
50%
Solution:
since,
A
T
A
=
I
⇒
⎣
⎡
a
b
c
b
c
a
c
a
b
⎦
⎤
⎣
⎡
a
b
c
b
c
a
c
a
b
⎦
⎤
=
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
⇒
⎣
⎡
a
2
+
b
2
+
c
2
ab
+
b
c
+
c
a
ab
+
b
c
+
c
a
ab
+
b
c
+
c
a
a
2
+
b
2
+
c
2
ab
+
b
c
+
c
a
ab
+
b
c
+
c
a
ab
+
b
c
+
c
a
a
2
+
b
2
+
c
2
⎦
⎤
=
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
⇒
a
2
+
b
2
+
c
2
=
1
and
ab
+
b
c
+
c
a
=
0
Now,
(
a
+
b
+
c
)
2
=
a
2
+
b
2
+
c
2
+
2
(
ab
+
b
c
+
c
a
)
=
1
+
2
⋅
0
=
1
⇒
a
+
b
+
c
=
1..............
(
i
)
Now,
(
a
3
+
b
3
+
c
3
)
=
(
a
+
b
+
c
)
(
a
2
+
b
2
+
c
2
−
ab
−
b
c
−
c
a
)
+
3
ab
c
⇒
a
3
+
b
3
+
c
3
=
1
+
3
=
4
[
u
s
in
g
(
i
)]