The given matrix is A=⎣⎡abcbcacab⎦⎤ AT=⎣⎡abcbcacab⎦⎤ ⇒AT=A ⇒AT⋅A=A2 A=⎣⎡abcbcacab⎦⎤ ∴∣∣AT⋅A∣∣=∣∣A2∣∣
It is given that A⊤A=I ∣I∣=∣A2∣ I=∣A2∣
Now, ∣A∣=∣∣abcbcacab∣∣
Applying the transformation R1→R1+R2+R3 , we get ∣A∣=∣∣a+b+cbca+b+ccaa+b+cab∣∣ =(a+b+c)∣∣1bc1ca1ab∣∣
Now, apply C2→C2−C1 and C3→C3−C1 , we get ∣A∣=(a+b+c)∣∣1bc0c−ba−c0a−bb−c∣∣ =(a+b+c)∣∣c−ba−ca−bb−c∣∣ =(a+b+c)[bc−c2−b2+bc−(a2−ac−ab+bc)] =−(a+b+c)[a2+b2+c2−ab−ac−bc] =−(a3+b3+c3−3abc) ⇒∣∣A2∣∣=(a3+b3+c3−3)2=1(∵abc=1)…(i) ∵a,b and c are positive. 3a3+b3+c3>3a3b3c3=abc=1 a3+b3+c3>3
So, from equation (i) we have a3+b3+c3>3 a3+b3+c3−3=1 a3+b3+c3=4