Given, m is the AM of l and n. ∴l+n=2m...(i)
and G1,G2,G3 are geometric means between l and n. l,G1,G2,G3 are in GP.
Let r be the common ratio of this GP. ∴G1=lr,G2=lr2,G3=lr3,n−lr4⇒r=(ln)41
Now,G14+2G24+G34=(lr)4+2(lr2)4+(lr3)4 =l4×r4(1+2r4+r6)=l4×r4+(r4+1)2 =l4×ln(ln+l)2=ln×4m2=4lm2n