Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If m is a non - zero number and ∫ (x5m-1 + 2x4m - 1/(x2m +xm +1)3)dx = f(x) +c, then f(x) is :
Q. If m is a non - zero number and
∫
(
x
2
m
+
x
m
+
1
)
3
x
5
m
−
1
+
2
x
4
m
−
1
d
x
=
f
(
x
)
+
c
,
then f(x) is :
3799
241
JEE Main
JEE Main 2014
Integrals
Report Error
A
2
m
(
x
2
m
+
x
m
+
1
)
2
x
5
m
0%
B
2
m
(
x
2
m
+
x
m
+
1
)
2
x
4
m
50%
C
(
x
2
m
+
x
m
+
1
)
2
2
m
(
x
5
m
+
x
4
m
)
0%
D
2
m
(
x
2
m
+
x
m
+
1
)
2
(
x
5
m
−
x
4
m
)
50%
Solution:
∫
(
x
2
m
+
x
m
+
1
)
3
x
5
m
−
1
+
2
x
4
m
−
1
d
x
=
∫
x
6
m
(
1
+
x
−
m
+
x
−
2
m
)
3
x
5
m
−
1
+
2
x
4
m
−
1
d
x
=
∫
(
1
+
x
−
m
+
x
−
2
m
)
3
x
−
m
−
1
+
2
x
−
2
m
−
1
d
x
Put
t
=
1
+
x
−
m
+
x
−
2
m
∴
d
x
d
t
=
−
m
x
−
m
−
1
−
2
m
x
−
2
m
−
1
⇒
−
m
d
t
=
(
x
−
m
−
1
+
2
x
−
2
m
−
1
)
d
x
∴
∫
(
x
2
m
+
x
m
+
1
)
3
x
5
m
−
1
+
2
x
4
m
−
1
d
x
=
−
m
1
∫
t
−
3
d
t
=
2
m
t
2
1
+
C
=
2
m
(
1
+
x
−
m
+
x
−
2
m
)
1
+
C
=
2
m
(
x
2
m
+
x
m
+
1
)
2
x
4
m
+
C
∴
f
(
x
)
=
2
m
(
x
2
m
+
x
m
+
1
)
2
x
4
m