Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
if [log(logx) + (1/(logx)2)]dx = x[f(x)-g(x)] +C, then
Q. if
[
l
o
g
(
l
o
gx
)
+
(
l
o
gx
)
2
1
]
d
x
=
x
[
f
(
x
)
−
g
(
x
)
]
+
C
,
t
h
e
n
2158
239
Integrals
Report Error
A
f
(
x
)
=
l
o
g
(
l
o
gx
)
,
g
(
x
)
=
l
o
gx
1
49%
B
f
(
x
)
=
l
o
gx
,
g
(
x
)
=
l
o
gx
1
20%
C
f
(
x
)
=
l
o
gx
1
,
g
(
x
)
=
l
o
gx
1
13%
D
f
(
x
)
=
x
l
o
gx
1
,
g
(
x
)
=
l
o
gx
1
18%
Solution:
Given,
∫
[
l
o
g
(
l
o
gx
)
+
(
l
o
g
)
2
1
]
d
x
=
x
[
f
(
x
)
−
g
(
x
)
]
+
C
L
H
S
=
∫
1
⋅
l
o
g
(
l
o
gx
)
d
x
+
∫
(
l
o
gx
)
2
1
d
x
=
l
o
g
(
l
o
gx
)
⋅
x
−
∫
(
(
l
o
gx
)
×
x
1
×
x
)
d
x
+
∫
(
l
o
gx
)
2
1
d
x
+
C
=
x
l
o
g
(
l
o
gx
)
−
∫
l
o
gx
1
d
x
+
∫
(
l
o
gx
)
2
1
d
x
+
C
=
x
l
o
g
(
l
o
gx
)
−
l
o
gx
1
×
x
+
∫
(
l
o
gx
)
2
−
1
⋅
x
x
d
x
+
∫
(
l
o
gx
)
2
1
d
x
+
C
=
x
[
l
o
g
(
l
o
gx
)
−
l
o
gx
1
]
+
C
∴
f
(
x
)
=
l
o
g
(
l
o
gx
)
,
g
(
x
)
=
l
o
gx
1