Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If loge 5, loge(5x-1) and loge (5x-(11/5)) are in A.P., then the values of x are
Q. If
l
o
g
e
5
,
l
o
g
e
(
5
x
−
1
)
and
l
o
g
e
(
5
x
−
5
11
)
are in
A
.
P
.
, then the values of
x
are
2902
234
KEAM
KEAM 2012
Sequences and Series
Report Error
A
lo
g
5
4
and
lo
g
5
3
B
lo
g
3
4
and
lo
g
4
3
C
lo
g
3
4
and
lo
g
3
5
D
lo
g
5
6
and
lo
g
5
7
E
12 ,6
Solution:
Since,
lo
g
e
5
,
lo
g
e
(
5
x
−
1
)
and
lo
g
e
(
5
x
−
5
11
)
are in AP.
∴
2
lo
g
e
(
5
x
−
1
)
=
lo
g
e
5
+
lo
g
e
(
5
x
−
5
11
)
⇒
(
5
x
−
1
)
2
=
5
(
5
x
−
5
11
)
⇒
5
2
x
+
1
−
2
×
5
x
=
5
×
5
x
−
11
⇒
5
2
x
−
7
×
5
x
+
12
=
0
⇒
5
2
x
−
4
×
5
x
−
3
×
5
x
+
12
=
0
⇒
(
5
x
−
4
)
(
5
x
−
3
)
=
0
⇒
5
x
=
4
,
5
x
=
3
⇒
x
=
lo
g
5
4
,
x
=
lo
g
5
3